bullet Brewer's Friend iPhone Apps

Brewing Water Basics – Putting it All Together

Tuesday, February 13th, 2018

brewing water minerals

We’ve covered some of the basics of water chemistry in the last two articles, and now we are ready to put it all together.

The first step is to start with chlorine-free water of suitable quality for brewing and reducing the alkalinity if needed.

Once you have an understanding of targeting an optimum range for the mash pH and taken steps to use non-alkaline water for sparging, the next step is to consider using brewing salts in the water to further enhance the flavor of your beer.

Just as in cooking certain spices go well with certain foods, certain brewing salts can enhance certain styles of beers. Looking back at the list of our brewing salts, we can see what each of them brings to the table:

Calcium (in Gypsum and Calcium Chloride): Calcium is the primary ion that determines hardness of the water. It helps with lowering the pH during mashing, helps with precipitations of proteins in the boil (hot break), enhances yeast flocculation, and assists in preventing beerstone. Many lagers are made with very low levels of calcium, so it is not required but can be helpful in the amounts 50-100 ppm.

Magnesium (Epsom Salt or MgSO4): Also responsible for providing hardness to the water, it can provide a sour/bitter flavor to the beer in amounts of 30 ppm or more. It has a laxative effect in much larger amounts. Malt provides all of the magnesium required for yeast health, so it is not required as an addition unless adding sulfate in the presence of a high calcium level (using epsom salts, or MgSO4).

Sulfate: Sulfate is the ion that is used to accentuate hop bitterness by enhancing the dryness of the finish. Additions are normally avoided in continental lagers or only used in small amounts, often 30 ppm or less, and in most ales the ideal amount is 30-70 ppm. For highly hopped beers, the desired sulfate level may be much higher: 150-300 ppm for IPAs or west coast APAs. That will make the finish seem more crisp and dry. If using 150 ppm or higher, the chloride level should be under 50 ppm to avoid a minerally finish to the beer.

Chloride: Chloride accentuates a fullness or “roundness” of flavor in the beer, enhancing the malt sweetness. It is generally used in the 40-100 ppm range in many beers, but in the New England IPA style, the chloride is often over 100 ppm, up to 150 ppm.

Sodium (Non-iodized table salt or NaCl): Sodium rounds out the malt flavors, and can be used in modest amounts (under 150 ppm). A higher concentration can make the beer taste salty, and having a high sodium combined with a high sulfate level can create a harsh bitterness. It is generally recognized that keeping the sodium at 0-60 is a safe bet, and using brewing water sourced from a water softener is to be avoided.

Baking Soda (NaHCO3 or sodium bicarbonate): This is used if alkalinity is needed to raise mash PH, and also provides sodium.

Many of us can remember the older guy at the bar with a tap beer in front of him using a salt shaker to sprinkle salt in his beer. Looking at the list, we can see that the table salt consists of NaCl- both sodium and chloride. The sodium rounds out the malt flavor, and the chloride accentuates the fullness of the malt sweetness. We can do the same thing via these salt additions to the mash and/or preboiled wort.

Determining Brewing Water Additions

brewers friend brewing water calc
Check out the Brewer’s Friend Brewing Water Calculator

Adding the salts is done in very small amounts, typically grams. While it can be converted to other measurements (a teaspoon of calcium chloride is close to 5 grams), the amounts are generally very small so a scale that weighs to grams and/or tenths of a gram is very helpful. While it is easiest to just add a teaspoon or a half of a teaspoon of something to the mashing water, it’s best to look at a brewing spreadsheet showing the additions so you can see the results of adding the salts. There are also nomographs available and of course an enterprising brewer can calculate it by hand. The amounts are usually expressed in parts per million (PPM) and the spreadsheets themselves have guidelines on how much to add to avoid overuse. The salts are typically added to the mash, but can be added to the boil kettle in some cases. Make sure to never add baking soda or other alkalinity to the sparging water. In the rare case where you need to raise the mash pH, add the baking soda to the mash.

When deciding what additions are suitable for each batch of beer, consider what you want to bring out in the beer’s flavor. Also, keep in mind that “less is more” generally applies, until you know what you like in a certain beer recipe or style. For example, if you are making an American IPA you may want to use some gypsum (calcium sulfate), as the sulfate will help to provide a dry finish and a crisper mouthfeel to enhance the hops bittering. While some brewers will go up to 300 ppm of sulfate in these beer styles, you may want to start smaller at first to avoid perceptions of harshness. Since the easiest way to add sulfate to the beer is via gypsum which also adds calcium, this is commonly done. The other way to add sulfate is via magnesium sulfate (epsom salt), but it’s important to keep the magnesium level below about 30 ppm to avoid a bitter/sour flavor. Some brewers eschew the addition of epsom salts totally, feeling that the gypsum does the job without any issue.

For a beginning profile for something like an American pale ale or IPA, a modest addition of gypsum is may give great results. As an example, using 7 gallons of RO to begin the brewday for a 5 gallon batch, adding 7 grams of gypsum will provide 63 ppm of calcium and 148 ppm of sulfate. Looking at the list above, you can see that it is in a desirable range for both calcium and sulfate for a hoppy beer. Using a brewing spreadsheet, you can see that using this amount of gypsum in the mash is also likely to give an optimum mash pH as well, depending on the grainbill, so this is a great place to start. After the brew is finished and taste testing, a decision can be made for next time. You can even add a touch of gypsum to the glass, to see if you prefer the beer with more sulfate for next time. Starting with less than the maximum recommended generally gives satisfaction to the brewer.

For beers that have a lovely malt flavor, calcium chloride is a common addition. Looking at the list again, you can see that calcium chloride will provide calcium to the mash as well as the chloride. Since chloride enhances the fullness or “roundness” of malt flavor, and gives a perception of sweetness to the malt, adding it to a beer recipe can bring the flavor to the next level. If you’re making an Octoberfest or brown ale, adding some calcium chloride would be a great move. Adding 3 grams to a 5 gallon batch of brown ale maybe be just the ticket to making a very good beer great.

For brewing lagers, especially European style lagers, less sulfate is desirable and often it is completely left out. It wouldn’t be unusual to brew a German pilsner without any additions to RO water at all, so keep in mind that adding brewing salts is not necessary and is a matter of the style of the beer as well as the brewer’s taste.

For a good basic “all purpose” water profile to start, consider something like this:

Calcium: 75 ppm
Magnesium: 10 ppm (more or less, but under 25 ppm)
Sodium: 0-50 ppm
Sulfate: 50-70
Chloride 50-70
Mash pH of 5.3-5.5

There are a couple of cautions when adding brewing salts to your water adjustments. Many brewers will refer to the sulfate:chloride ratio because that’s been discussed in older brewing texts. The theory is that keeping a ratio of sulfate to chloride will make a beer more “hoppy” or more “malty”- but this is not so. When discussing a ratio, remember that 80 ppm of sulfate and 40 ppm of chloride is a 2:1 ratio, and according to a brewing water spreadsheet available online (EZ Water) the text says “may enhance bitterness”. That’s great- but 800 ppm sulfate and 400 ppm of chloride is ALSO a 2:1 ratio- and it also says “may enhance bitterness”. Common sense dictates that one beer will be far different than the other, while the ratio is exactly the same. The first should be just fine, although not with a particularly dry finish, but the second will be “minerally” and undrinkable. When you are cooking and add too much salt to your spaghetti sauce ,you cannot erase that by adding more pepper. When brewing, you also can’t “erase” too much gypsum by adding more calcium chloride. Instead of targeting a sulfate:chloride ratio, look at the actual numbers in ppm and the recommended limits of each ion, and make the decision based on that.

Another pitfall is to be so consumed with the numbers of the ions is to forget that the mash pH is the most important aspect of delving into water chemistry. An appropriate mash pH will provide the most benefit to your beer, while the flavor ions are the “seasonings” in your beer. Starting with a good recipe and using good water and targeting an optimum mash pH will make a very good beer. Tweaking the recipe by adding some gypsum and calcium chloride (as examples) may take that very good beer to very, very good or even excellent beer. To compare brewing to cooking again, adding the perfect amount of salt and pepper to your spaghetti sauce can make your very good sauce something memorable, and adding a bit of rosemary may make it exceptional. So it goes with brewing- starting with a great base and adding your brewing salts in the right amounts can take it to the next level. Adding too much is more of a danger than too little, so be aware of that in your additions as you start adjusting your water.

Entire books have been written about brewing water and water chemistry for brewers, as the subject is complex. Further reading is highly recommended. Some good sources are listed below:

Here are a few links to additional reading, as well as some of the sources of this article:
http://howtobrew.com/book/section-3/understanding-the-mash-ph/reading-a-water-report
John Palmer, How To Brew
https://sites.google.com/site/brunwater/water-knowledge
Martin Brungard, Bru’nwater
http://braukaiser.com/wiki/index.php?title=Beer_color,_alkalinity_and_mash_pH
Kai Troester
https://www.brewersfriend.com/mash-chemistry-and-brewing-water-calculator/
Brewer’s Friend, water calculator

Water- A Comprehensive Book for Brewers John Palmer & Colin Kaminsky

Share: Share post to twitter Share post to Facebook Share post to google plus Share post to Pinterest

Brewing Water Basics Part 2

Sunday, November 19th, 2017

brewing water basics alkalinity

This article is a continuation of a three-part series. Check out part one here.

You may have heard that you have “hard” water, or “soft” water. Hardness in water is mostly due to the calcium and magnesium ions in the water. A low concentration of these is said to provide soft water, while high concentrations produce hard water. The hardness of your water varies regionally. In the Midwest the water tends to be hard, while in places like southern California and other coastal areas, the water tends to be soft. Neither type of water is inherently poorly suited to brewing, and both can be used successfully. In most cases, moderately hard water is ideal due to the need or desire for some calcium in the brewing water.

The hardness of your water is balanced by the alkalinity of the water. This is in the form of bicarbonates. Alkaline water is high in bicarbonates. In your water report, you should see “hardness as CaC03” in parts per million (ppm) or “alkalinity as CaC03” in ppm. The key to using your water is to determine its alkalinity and taking steps to provide the proper amount so that you can obtain a proper mash pH. The make up of the sparge water is important as well, and this should be kept in mind.

The pH of your starting water does not impact the mash pH as much as you would think. That is due to the buffering capacity of the water (the alkalinity) and the more acidic grains. Once the water is combined with the grains in your recipe, the mash pH will be determined. The mash pH is the important part of this—it determines many of the qualities of your beer (flavor, color, clarity) and is a factor in enzyme activity. These enzymes are what go to work to convert the starch in the malted grain to fermentable sugars. Providing a mash pH of 5.2-5.7 favors their activity, although the enzymes will work outside of that range. Narrowing the target mash pH to 5.3-5.5 will help to optimize the enzymes, and also enhance flavor. A higher pH will increase harshness in the finished beer, extracting more tannins and also increase the isomerization of hop oils so that the beer can come across as rough or coarse. To be clear, when we are discussing the pH during mashing, we are talking about the readings taken at room temperature. To check the pH, a very small sample (even a shot glass size) can be taken from the mash, cooled in an ice/water bath, and then checked when the sample is at 68-75 degrees. PH readings vary from mash temperatures to room temperatures, and any pH readings are always provided at room temperature. This also will help preserve the life of the probe on the pH meter. A good quality pH meter can be found for +/- $100 or so, and is highly recommended. There are pH strips available in the 5-6 pH range, but their accuracy is questionable and they can be very hard to read, especially with dark wort.

Sparge water should be acidified to have a pH of less than 6, to avoid tannin extraction as the gravity of the wort drops. Alternatively, water with minimal alkalinity can be used such as distilled or reverse osmosis water for this. Sparging with alkaline water can cause some harsh flavors as well as a puckering dryness in the finish.

Dealing with Alkalinity:

For some of us, the biggest challenge is dealing with high alkalinity in the water. For a moderate amount of alkalinity, some acid in the mash and sparge water can be an easy fix. For those with high alkalinity, there are options such as pre-boiling the water and racking off of the precipitate, lime softening, dilution with distilled water, or even installing a reverse osmosis system in your home to deal with this. Our article will discuss adding some acids to our brewing water to optimize the mash pH and sparge water alkalinity, and diluting your own water with distilled or reverse osmosis water.

For further information on reducing alkalinity with lime, please see: http://braukaiser.com/wiki/index.php?title=Alkalinity_reduction_with_slaked_lime . The technique is easy, but far beyond the scope of this article. This works well for brewers with good but alkaline water, and is worth considering as it is inexpensive.

One of the easiest ways to estimate your probable mash pH is with a brewing water spreadsheet. There are several available online, and in some brewing software programs you may already have.  We recommend the Advanced Water Calculator at Brewer’s Friend here:  https://www.brewersfriend.com/?p=2959&preview=true .  Each calculator may differ some in the algorithms they use, but most are fairly similar. With your water report in hand (or using the default for reverse osmosis water if that is your supply), you enter the values into the software where indicated, along with the volume of water you are starting with and the batch size. The volume of water you may start with may be a gallon or two more than your batch size, due to boil off and grain absorption and there will be a box for this. Using the recipe input portion, you add the amounts of the grains you are using in the current batch. The spreadsheets will then give you a projected estimate of the mash pH.  The water calculator in Brewer’s Friend is easy to use with a very small learning curve.

You will notice that almost all of the mash pH projections for light to amber colored beers will be higher than desired. That is where the acid additions come in. The acids of choice for brewers are lactic acid and phosphoric acid in the US and often CRS in the UK. There are others available, but many (such as citric acid) may have an undesirable flavor impact so lactic acid and phosphoric acid are more widely used in the US. Lactic acid may have a flavor impact in large amounts as well, so if you have more than moderately alkaline water you may wish to use phosphoric acid which is more flavor neutral. Make sure to look at the strength of your acid. Lactic acid usually comes in 88%, while phosphoric acid can be 10% or 88%. The spreadsheets have a place to add the acid of choice (with the strength) on them, and then recalculate the mash pH of your batch.

Since the grains have a natural acid content, when mixed with water the pH of the mash will naturally drop. Dark roasted grains are more acidic than pale grains, and will drive the mash pH lower without adding acid to the mash. Unless you are brewing a very dark beer, many water supplies will require some acid however, and pale beers most of all. Using a soft water with low alkalinity is a key to success with beers such as pilsners because of this, while brewing a stout will require some alkalinity to balance the acidic grains. That is where the spreadsheets can be helpful, so that the acid content of the grains is estimated and then balanced against the alkalinity of the water. Target a mash pH of 5.2-5.7, ideally 5.3-5.5, for best results. Don’t forget that readings are always done at room temperature. It is highly recommended to do a test mash- that is, a very small batch of the recipe you are using, with the same volume of water per ounce of grain, and to check the pH. You will then know how the entire volume will react, and can make adjustments to your acid additions as needed when making the batch.

In rare cases, it may be necessary to add alkalinity to your water. For example, if you are starting with soft water with low alkalinity, the darker grains used in a porter or stout may drive your pH too low. Unless you have naturally high sodium in your water, baking soda is the addition of choice. Calcium carbonate (chalk) has been used routinely in brewing, but because of its limited solubility, it does not dissolve well in the mash unless extraneous measures are taken, and should be avoided.

heating brewing sparge water brewing water chemistry

It is also important to treat the sparge water if you have alkaline water. If you adjust your sparge water to have a pH of 5.5-6, and avoid any additions of alkalinity like baking soda, you should be all set. Many brewers will choose to sparge with 100% distilled or reverse osmosis (RO) water in lieu of acidifying the water, and that works well. To acidify the sparging water, lactic acid or phosphoric acid can be used. Often, this is very little acid especially if you are using 88% lactic acid so a pipette or dropper is very helpful. To avoid flavor impacts, using phosphoric acid is recommended if more than 5 ml of lactic acid in 5 gallons of water is required for the necessary pH drop. If you do not have a pH meter, the sparge water tool in the brewing water spreadsheets can be used.

To check the mash pH, a small sample of the mash can be taken out and cooled to room temperature (72-75 degrees or so) and the reading taken with a freshly calibrated pH meter. A small shot glass cooled in an ice batch works well for this. The pH of the mash does change as the mash proceeds, however slight, and so the first reading should be taken within about 10 minutes of mashing in. If it is fairly close to the projected desired pH, it should be left and notes taken for next time as chasing pH can be futile if adding acid and then alkalinity to try to hit the target. If the mash pH is wildly off from the projected pH, a new reading should be taken before attempting any fix.

For many brewers, mash pH adjustments may seem overwhelming, at least at first, so further reading is recommended. This article attempts to break water chemistry down into the simplest methods and this is a very complex subject.

If all of this still seems very difficult at first, one of the quick and easy ways to get a likely acceptable mash pH is to start with 100% reverse osmosis (RO) water and add a bit of lactic acid or acidulated malt to it. That will be appropriate for most light/pale beers, although not as precise as targeting a mash pH with the water additions and grist in the recipe. Using RO water for the mash and sparging water, and using acidulated malt in the amount of 1-2% of the grainbill (usually 2-4 ounces in an 11 pound 5 gallon batch) will often get you quite close. For a stout or other beer recipe with 1# of dark roasted grain like roasted barley or black malt, leave out the acidulated malt.  This should result in an acceptable end product without worry.

We will talk about more specific steps to make water chemistry easier for you in the next article of our series.

 

Share: Share post to twitter Share post to Facebook Share post to google plus Share post to Pinterest

Brewing Water Basics – Part 1

Sunday, November 19th, 2017

brewing water, mash water

For many brewers, water chemistry is treated as the last frontier of homebrewing. Oftentimes, it is ignored or at least not something homebrewers want to think about. The old adage “if your water tastes good, it’s fine to brew with” may be repeated, and believed. The brewer may work on refining recipes and take great pains to provide fermentation temperature control, but ignore the water used in brewing.

This is a mistake because the largest component of beer is the water. Managing the pH of the mash and the flavor contributions of the water can take a good beer to a great beer. While it’s true that poor tasting water will make poor tasting beer, the inverse is not always true. Great tasting water out of the tap may not be well suited to brewing. Additions to the water by the water supply company such as chlorine, or the more stable form called chloramine, keep your water supply safe for drinking but chlorine can negatively impact the flavor of the beer. In some areas, the water out of the tap may be high in bicarbonate or iron which can also negatively impact your beer. If you wish to not delve into water chemistry at all, it is advisable to use reverse osmosis water from the water dispensers at grocery stores or distilled water as it would be a blank canvas to start with. Even so, better beer can be made with paying attention to a few water additions and mash pH that will be discussed in this article series.

Where to Start With Brewing Water

Getting a water report from your water company, if using municipal water, is a great place to start. They should have all of the information available, but you may not get all of the information you need from them at first. They are required to test the water for safety, and will report contaminants and pesticides, but will not always give you the components that brewers are looking for in a water report. You can ask brewers around you about the water, but often the easiest way to get a report on what you need is by ordering a household minerals test from a testing company. If you have a well, this is likely the only way to get a report. One of the dangers will dabbling with brewing water is to add items per a recipe without knowing what you are starting with, so the report is crucial before beginning. A popular company is Ward Labs, but there are others out there. A basic test should run under $35 for what you need. You will require sodium, calcium, magnesium, sulfate, chloride, bicarbonate, and total alkalinity.

It’s also important to find out if your water company uses chlorine or chloramines for disinfection of the water. In order to use any water for brewing, this is a steadfast rule: the water must be chlorine free. Chlorine will off-gas and/or boil off, but chloramine is a more stable form of chlorine and will not easily boil off. It can be removed via campden tablets (potassium metabisulfite) easily. One tablet crushed and dissolved into 20 gallons of water and stirred well will remove chloramine (and chlorine) in most cases. Removing the chlorine, or purchasing reverse osmosis or distilled water should be the first step in dealing with water.

Understanding Minerals

brewing water mineral additions

The results from your water test will give you the ion concentrations in parts per million (ppm) or mg/l. These minerals are important for brewing water, because they can affect the suitability for use in brewing and have a flavor impact.

If you have iron in your water (look for discoloration in plumbing such as rust spots), it is generally poorly suited for brewing as it is detectable in very small amounts in the finished beer as an unpleasant metallic or even blood-like flavor. Iron should be under 0.1 ppm in the water. If you have sulfide flavors and aromas in your raw water (rotten egg-like smell), it will not be suitable for brewing. If you have some sediment, a filter will often help. Just be sure to send the water after filtering for testing if that is what you plan to use.

The major mineral ions will we be working with are as follows:

Calcium: Calcium is the primary ion that determines hardness of the water. It helps with lowering the pH during mashing, facilitates precipitations of proteins in the boil (hot break), enhances yeast flocculation, and assists in preventing beerstone. Many lagers are made with very low levels of calcium, so it is not required but can be helpful in the amounts 50-100 ppm.

Magnesium: Also responsible for providing hardness to the water, magnesium can provide a sour/bitter flavor to the beer in amounts of 30 ppm or more. It has a laxative effect in much larger amounts. Malt provides all of the magnesium required for yeast health, so it is not required as an addition unless adding sulfate in the presence of a high calcium level (using epsom salts, or MgSO4).

Sulfate: Sulfate is the ion that is used to accentuate hop bitterness by enhancing the dryness of the finish. Additions are normally avoided in continental lagers or only used in small amounts, often 30 ppm or less. In most ales the ideal amount is 30-70 ppm. For highly hopped beers, the desired sulfate level may be much higher: 150-300 ppm for IPAs or west coast APAs. That amount will make the finish seem more crisp and dry. If using 150 ppm or higher, the chloride level should be under 50 ppm to avoid a “minerally” finish to the beer.

Chloride: Chloride accentuates a fullness or “roundness” of flavor in the beer, enhancing the malt sweetness. It is generally used in the 40-100 ppm range in many beers, but in the New England IPA style, the chloride is often over 100 ppm, up to 150 ppm.

Sodium: Sodium rounds out the malt flavors, and can be used in modest amounts (under 150 ppm). A higher concentration can make the beer taste salty, and having a high sodium combined with a high sulfate level can create a harsh bitterness. It is generally recognized that keeping the sodium at 0-60 is a safe bet. Using brewing water sourced from a water softener is to be avoided.

Bicarbonate: Bicarbonate plays a huge role in water chemistry for brewing. It raises the pH of the mash, so should be kept under 50 ppm for pale/light colored beers. An amber colored beer could use a bicarbonate amount of up to 150 ppm (depending on the grainbill). A very dark beer with roasted grains (like a stout) could easily go up to 200 ppm or even a bit more, as more bicarbonate is needed to balance the acidity of the dark roasted malts. As such, there is no ideal range for mashing water except that what is needed to achieve an appropriate mash pH. In sparge water, low bicarbonate water is desired to avoid tannin extraction from the grain. This will be discussed at length in our next article on water and mash pH.

Brewing Salts

The common brewing salts are gypsum, calcium chloride, epsom salts, chalk, sodium chloride, and baking soda. These are available at the homebrew supply store, or can sometimes be found at your grocery market.

Gypsum  (CaSO4 or calcium sulfate) is used in brewing to bring calcium and sulfate to the water. This can reduce the mash pH, in a small amount as can calcium chloride.

Calcium chloride (Pickle crisp or CaCl2) is used to add calcium as well as chloride, and epsom salt (MgSO4 or magnesium sulfate) is used for the magnesium and sulfate contribution. Plain old non-iodized table salt (NaCl2 or sodium chloride) brings sodium and chloride to the table.

Chalk: (CaC03 or calcium carbonate) has been traditionally used to raise mash pH in cases where it may be needed, but it doesn’t dissolve well without extraneous measures and is to be avoided in general.

In those rare cases where the mash pH should be raised, baking soda (NaHCO3 or sodium bicarbonate) is most useful.

Lactic acid or phosphoric acid are the most common acids used to lower the mash pH if needed.

A helpful comparison to brewing salts may be seasoning salts in cooking. Just as making chicken soup with a great recipe and fresh ingredients can be improved with a bit of salt or some bay leaf, a great beer base can be improved with a bit of tweaking of brewing salts. Too much salt in the chicken broth can ruin the soup, however; and too much of a brewing salt can ruin the beer. Using more conservative additions with the “less is more” idea is a great way to approach adding brewing salts to your homebrewing repertoire. You don’t want a “minerally” or harsh beer in the end after all your hard work!

There are brewing spreadsheets and books available to help you decide where to target your ideal concentrations of those ions, and Brewer’s Friend has both a basic and advanced water calculator to help you reach your goals.   We have given you give a range, and it is recommended to stay at the lower end of the range until you know what you like. You can always add more next time, but you can’t take it out. One pitfall that many brewers fall into as they delve into water chemistry is finding a water profile from a historic city, and set that up as a target. That can be problematic, as it may not be what the breweries themselves actually used, as they may have preboiled the water to drop the bicarbonate, or used water from another source. If a profile seems to have very high numbers, and you’d still like to make an authentic London porter, dig a bit deeper into what the breweries in that area did with the water before brewing with it. Brewing water with less than your ideal ion targets may seem a bit bland (think of the chicken soup seasoning analogy) but won’t be undrinkable as it would be if you add far too much of a good thing.

A good way to see what the brewing salts may do to your beer is to try it out. Pour a pint of your beer, and add a dash of table salt to it to see what chloride brings out. Next time, add some gypsum, to see what that brings to the beer.

If you are just starting in water additions, you can get by with gypsum, calcium chloride, baking soda, and lactic or phosphoric acid. We will discuss using those items as we discuss mash pH and delve deeper into water chemistry in the next article.

Share: Share post to twitter Share post to Facebook Share post to google plus Share post to Pinterest

Aspects of Brewing a Wheat Beer

Monday, October 23rd, 2017

wheat beers available

Hefeweizen, weissbier, witbier, white ale… Whatever your preference; wheat beers are abundant, effervescent, and different. They can be served with a slice of orange or lemon, with all the yeast “mit hefe” style, with raspberry syrup, or filtered crystal clear. They vary in color from the light witbier to copper-brown versions of weizenbock. They can smell and taste of: bananas, clove, coriander, bitter orange, and even bubblegum. These refreshing, mostly session strength ales are usually associated with summertime sunshine. However, there are a couple of higher ABV styles that would pair well with a cold evening by the fire.

Wheat Beer Grain Bills

The typical wheat contribution to the grain bill can be as high as 70%, with rare exceptions like grodziskie (an oak smoked wheat beer) making up 100% of the grist.

Wheat beers nearly went extinct in the 1500’s due to the Reinheitsgebot, the German beer purity law. The Reinheitsgebot stated that only barley, water, and hops could be used as ingredients to produce beer and thus prohibited breweries from using wheat, or other grains such as rye. According to a Brew Your Own article from 1999 the original purpose of the law is somewhat debatable. Certainly it was a consumer protection law to ensure people were in fact getting beer when they went to the local watering hole, but some sources claim it was meant to prevent a shortage of bread. Further down the rabbit hole of conspiracy is the idea that the pale white beers were only brewed by, and for, the nobles and clergy and not for the common man, who was left drinking the dark swill of the lower class. The law was later amended to include yeast, after its discovery.

Wheat beers have become somewhat of an American spring and summertime tradition. They often were considered to be the jumping off point for those interested in expanding their palates to include more than mass produced lagers but lately it seems like that is more the space of the mass produced IPA . Be that as it may, for those of us who live in the permanent summertime of California, we still enjoy a nice crisp, refreshing wheat beer in the sun year round. If big beer had any sense they would take a hint from Corona and show Shock Top or Blue Moon being happily consumed on beach volleyball courts by freakishly tall men and women, at high noon.

Styles of Wheat Beer

As long as we are on the subject of Belgian Wit and American summers let us take a look at Allagash White:

allagash white wheat beer

According to the BJCP (Beer Judge Certification Program), the standard guidelines for homebrew beer styles, Allagash White, along with Hoegaarden Wit, are prime examples of the wit style. Belgian Wits are generally brewed with 50% unmalted wheat and a light base malt like pilsner or 2 row pale. They can include oats to add to the haze and body. Noble hops are used to add a light bitterness, but nothing too noticeable, or overwhelming. Allagash White includes the traditional spice addition of coriander seed, which is the seed of cilantro that smells strikingly similar to Trix cereal. Allagash also uses the traditional curacao orange peel, which adds to that zesty zing in the aroma and flavor. I tried putting an orange slice to my pour and it was totally unnecessary. It added nothing to the beer and was ultimately just an obstacle in the drinking process. The beer is delicious on its own. Light, refreshing, nicely carbonated, and extremely flavorful.

I did a side by side with the macro produced Shock Top and it was comparable to watching a cover band at the local dive bar trying to fiddle their way through a Led Zeppelin song. On paper they are the same. Belgian style beers brewed with coriander and orange peel, but the difference between the two is painful. My suggestion, as far as adding an orange for garnish in the Shock Top, is to disregard the beer, and eat the orange. Also, for anyone learning about off flavors, the Shock Top tasted like cardboard. Paper and cardboard are aromas and flavors commonly associated with oxidized beer. If you have a buddy that insists on drinking this farce of a Belgian Wit I suggest you sneak some Allagash White into his/her cooler at the next outing. They will thank you later.

Have you tried the Hefe?

weinstephaner wheat beer

For the Hefeweizen (pronounced hay-fuh-vy-tsen) I chose the ultra-approachable Weihenstephaner Hefe Weissbier. According to them they are “the World’s oldest brewery” and the beer was brewed in accordance to “the purity law of 1516” which is slightly confusing considering the purity law clearly stipulated that barley was the only acceptable grain to brew with in 1516. This is how conspiracy theories get started. Give me a couple hours of online research and I’ll blow this whole Reinheitsgebot scam wide open! Further adding to the confusion, Randy Mosher in Tasting Beer stated that “Weis, Weiss, and Weisse all mean ‘white’ in German and have long been used to describe the pale, hazy beers containing wheat…” and “Weizen means ‘wheat’ in German and refers to the Bavarian or suddeutsch form of weissbier.” Even further: “hefe indicates Weissbier with yeast…” There is also a filtered version known as Kristalweizen…

The Weihenstephaner Hefe Weissbier, however, is very good. I never realized there was such a striking difference between the Belgian Wit style and German Hefeweizen. I always assumed they were the more or less the same, but different in small ways, like English Pale ale and American Pale Ale. I was wrong. The hefeweizen is much less aggressive in its flavor and brewed with 50%-70% wheat. It is softer and seemingly more rounded. The 4-vinyl guaiacol which is responsible for the clove like aroma and flavor in the yeast is in the forefront while the beer also hits notes of banana with a hint of bubblegum on the nose and taste. There is little to no bitterness or hop presence and it is extremely drinkable.

American Wheat

widmer american wheat

American wheat is one of those styles of beer that will forever be burned into my brain as uncool for reasons I don’t remember, but I don’t care, as I like it. I have vivid memories of my first times drinking these non-lager beers, after turning 21, of course. While going out to dinner with my mom, or my dad, I was quietly exploring beer menus and learning about the life I would lead after 40oz. malt liquor stopped being the norm. This was before IPAs became a staple offering at most establishments and back when hefeweizen just meant beer served with a lemon or an orange added on the rim. My memories include copious consumption of Widmer Hefe and Pyramid Hefeweizen. Since Widmer Hefe holds a space in my heart I opted to try it again to make sure it was still worthy. Upon revisiting it, the beer seemed dulled down, non-threatening, and different than I had remembered. It smelled like a hefeweizen, minus the yeast aroma, which is basically all the aroma of a hefeweizen. I went to their website to research if the recipe had changed or if my memories were better than the truth. Then as I entered my date of birth, and accessed the site, I saw a picture of the Widmer Hefe with a lemon garnishing the glass. That’s when I realized what I was missing. Having no lemons I opted for the trusty orange. I could have gone back to the store, but I had already had a tough enough time finding the Shock Top for this tasting. None of my go to stores carry it! I spend all this time seeking out small breweries and then when I need the macro stuff I can’t find it, go figure. Needless to say the orange brought the Widmer Hefe right back to where it was when I killed an oversized pitcher of it, at a burger shack, with my future wife, my mom, and my step-dad.

This is one, of many, reasons American beer has had a bad rap for so many years. It is the dumbest dumbed down version of a true hefeweizen. The yeast is a clean ale yeast and everything about it is subdued. The BJCP states that the use of American hops and more hop character, in general, is desirable. Call me crazy, but with all these American hops floating around in our IPAs, there must not be much left for our American wheats, because even at 15-30 IBU’s they are gentle and lightly bitter.

And now for something a little different.

wheat beers

Dunkel weissbier is a dark German wheat beer that maintains the yeasty banana and clove flavor other German wheat beers while also having a toasted bread or caramel flavor from the use of darker Vienna and Munich malts. Traditionally a decoction mash was used. This is a process in which a portion of the mash is removed and then brought to a boil and then added back into the main mash to bring the mash temperature to different rests. Decoction mashing aids in the darker caramel flavors associated with caramelized sugars and the maillard reaction, but this is a method that is generally no longer used in commercial breweries. Low on bitterness and hop aroma, the Erdinger Dunkel is like a dark Hefeweizen with some additional bready and caramel aspects. Malty yet dry, it is a nice change of pace that is sure to please novice beer drinkers and nerds alike.

Hefeweizen on steroids

weizenbock wheat beer

Weizenbock is an obscure style that doesn’t come up in conversation too much. It is a sleeper and I’m sure once American craft breweries discover it they will be brewing it for their yearly holiday beer. It is similar to a hefeweizen, but stronger, bigger, and, some would say, better. It is like banana bread in a glass and can come in light or dark versions. The extra malt usage adds to the higher ABV of anywhere from 6.5%-9.0% it has even more of that banana and clove flavor. Dark versions will utilize Vienna and/or Munich malt and can have more dark fruit character like plums, prunes, or raisins, and even a light chocolatey, but not roasted, flavor. I opted for the light version brewed by Weihenstephaner called Vitus. This is a good winter warmer for anyone looking to break from the traditional imperial stout or barley wine. I imagine it going great with some chocolate dessert by a roaring fire while the snow falls. Unfortunately, living in Los Angeles, I may never get to test my theory. I have, however, had an imperial stout on a cool 80 degree evening, so there’s that.

There are a few other beer styles to consider that use wheat as a fair portion of their grain bill

The classic Berliner Weisse, from none other than Berlin, is a low ABV sour that dates back to the 16th century. It is often served with raspberry syrup or with woodruff syrup to round out the mouth puckering tartness. The Berliner Weisse uses as little as 25% wheat in the grain bill, but at around 3.0% ABV. that is more than enough. During fermentation lactobacillus bacteria is introduced to create the tart, distinct sourness. It is an extremely low hopped beer in the single digit IBU range, which is evident in the lack of bitterness and hop aroma. These beers are around, but they are nowhere near as popular as they were at their peak. They are meant to be consumed young. Even with the recent interest in sour beers, some travel and effort may still be necessary on your part to find a prime example of a Berliner Weisse.

Lambic is spontaneously fermented wheat style that originated in Brussels region of Belgium. The beer utilizes hops that are 2-3 years old and an open overnight cooldown that exposes the wort to all the microorganisms that will do the hard work of fermenting, and souring the beer. Once cooled and exposed the wort is transferred into wooden fermenting vessels such as barrels where more wild yeast and bacteria are living and eager to feast on the fresh wort. They will remain in the vessels for at least one year and sometimes for several. Word on the street is one must travel to Brussels, specifically Brouwerij Cantillon, to try them.

After a few years in barrels older Lambic is blended with younger Lambic to create Gueuze. Which is bottled and then carbonated unlike the base beers, which are served with no carbonation. These highly sought after blends are still going strong in breweries such as Cantillon and can be found, in rare instances, on strong (read: STRONG) beer menus and at well curated bottle shops.

Fruit Lambic is another variation. Coming in varieties such as: kriek (cherry), frambroise (raspberry), or pomme (apple) as well as others, the fruit lambic is traditionally made by adding fruit to the year old Lambic and essentially creating a secondary fermentation which is then bottled and carbonated. Once again, look to Bouwerij Cantillon in Brussels for prime examples of this style. If you know someone who knows someone maybe you can secure a bottle for a rainy day, or better yet, a hot summer swelter.

Share: Share post to twitter Share post to Facebook Share post to google plus Share post to Pinterest

Tailgating and Homebrew: Two Essential Recipes

Sunday, October 1st, 2017

tailgating and beer, dark mild and fizzy yellow beer recipes

Nothing goes with tailgating like great beer. If you need a great beer quick, you can have these beers ready to serve in 10-14 days if you keg and about 21 days if you bottle. All grain recipes are formulated for 70% efficiency.

Dark Mild Recipe

dark mild beer recipe

A dark mild is a low-gravity, malt-focused British session ale. It’s refreshing and quaffable and will please both craft beer drinkers and those who think “dark beer” is a craft beer. Full with flavor, it’s approachable and with a low ABV so you can enjoy more than one. This recipe easily goes from grain to glass in 10 days. It’s delightful with a lower carb level, so once you keg it’s easy to quick carb it and serve.

 

Dark Mild Partial Mash

Grains Hop Schedule Yeast
  • 1 lbs English pale malt (like maris otter)
  • 8.0 oz Medium English crystal malt
  • 8.0 oz Golden Naked Oats
  • 6.0 oz Chocolate Malt
  • 4.0 oz Dark English Crystal malt
  • 2 lbs Maris Otter Extract (pale LME may be substituted
  • 1 lbs 4.8 oz Maris Otter Extract
    (add at flame out) (pale LME may be substituted)
0.75 oz Kent Goldings [6.2%] @ 60min
0.5 oz Kent Goldings [6.2%] @ 60min
WLP002 English ale yeast OR
Wyeast 1318 London ale III OR
S04 SafAle English Ale
By the Numbers: IBU SRM
OG:1.037 | FG:1.009 | ABV:3.6% 23.6 16.3

Notes:

Mash the grains in at 152 in one gallon for 60 minutes, then sparge (rinse) the grains up to your boil volume. Add the first addition of extract, and bring to a boil. Add the first hops addition, and begin timing for 60 minutes. At the second addition of hops with 10 minutes left in the boil, and add the final addition of extract when you turn off the flame.

 

Dark Mild All Grain

Grains Hop Schedule Yeast
  • 5 lbs 8.0 oz English pale malt (like maris otter)
  • 8.0 oz Medium English crystal malt
  • 8.0 oz Golden Naked Oats
  • 6.0 oz Chocolate Malt
  • 4.0 oz Dark English Crystal malt
  • 2 lbs Maris Otter Extract (pale LME may be substituted
0.75 oz Kent Goldings [6.2%] @ 60min
0.5 oz Kent Goldings [6.2%] @ 60min
WLP002 English ale yeast OR
Wyeast 1318 London ale III OR
S04 SafAle English Ale
By the Numbers: IBU SRM
OG:1.037 | FG:1.009 | ABV:3.6% 23.6 16.3

Notes:

Mash at 152 for 60 minutes. Use Irish moss or whirlfloc with 15 minutes left in the boil, if desired. Ferment at 65-68 degrees for approximately one week or until clear and at FG for at least 3 days.

Fizzy Yellow Beer

Yooper's fizzy yellow beer recipe

The “fizzy yellow beer” is an ale version of a crowd favorite. It’s approachable by light beer drinkers, but still with enough flavor to satisfy the beer snob in your midst.

This beer is simple, but simple can be wonderful. It’s a clean tasting beer like a macrobrew, but with a bit more flavor. Still low in alcohol for those “have more than one or two” days, it can be enjoyed during tailgating and throughout the fall.

You can substitute other noble hops for the tettnanger and perle with good results. Magnum is a good bittering hop, just make sure to calculate for the high alpha acids in a different hop variety. Hallertauer would be great, and saaz would also make a fine finishing hop.

 

Fizzy Yellow Beer Extract

If you can’t find Vienna LME, you can substitute pale LME but the Vienna flavor brings so much to this beer that it should be sought out and used if at all possible.

Grains Hop Schedule Yeast
  • 3 lbs Extra light dry extract
  • 3 lbs 4.8 oz Vienna LME
    (add at flameout with the last hops addition)
0.5 oz Perle [8.4%] @ 60min
0.5 oz Tettnang [4.2%] @ 45min
0.5 oz Tettnang [4.2%] @ 0min
Wyeast 1318 London Ale III OR

S05 Safale (dry yeast)
By the Numbers: IBU SRM
OG:1.045 | FG:1.010-1.011 | ABV:4.4-4.5% 26 5

Notes:

London ale yeast is used for this recipe because it is fairly “clean” at low ale temperatures and leaves a clear beer behind quickly. You can substitute another yeast strain if you have a favorite. Using whirlfloc or Irish moss in the boil will help with having a clear beer quickly. Ferment at 65-68 degrees for about a week, or until the beer is clearing and is at FG for at least 3 days.

 

Fizzy Yellow Beer All grain

Grains Hop Schedule Yeast
  • 6 lbs Vienna Malt
  • 3 lbs Pilsner malt
0.5 oz Perle [8.4%] @ 60min
0.5 oz Tettnang [4.2%] @ 45min
0.5 oz Tettnang [4.2%] @ 0min
Wyeast 1318 London Ale III OR

S05 Safale (dry yeast)
By the Numbers: IBU SRM
OG:1.045 | FG:1.010-1.011 | ABV:4.4-4.5% 26 5

Notes:

London ale yeast is used for this recipe because it is fairly “clean” at low ale temperatures and leaves a clear beer behind quickly. You can substitute another yeast strain if you have a favorite. Using whirlfloc or Irish moss in the boil will help with having a clear beer quickly. Ferment at 65-68 degrees for about a week, or until the beer is clearing and is at FG for at least 3 days.

 

Sources:

Tailgaiting image by Kipp Jones

Share: Share post to twitter Share post to Facebook Share post to google plus Share post to Pinterest

Beer Styles – ABV Chart (Alcohol By Volume Ranges) – 2017 Update

Sunday, May 7th, 2017

We've updated our popular Alcohol Range Graphs with the latest BJCP beer styles. This chart shows the BJCP beer styles and their alcohol by volume (ABV) ranges in bar graph format.


Ranges of Alcohol by Volume (ABV) by Style



Loading chart. Please wait…




Data for these charts come from the the Beer Judge Certification Program (BJCP).
Share: Share post to twitter Share post to Facebook Share post to google plus Share post to Pinterest

Beer Styles – IBU Chart (Bitterness Ranges) – 2017 Update

Sunday, May 7th, 2017

We've updated our popular Bitterness Range Graphs with the latest BJCP beer styles. This chart shows the BJCP beer styles and their international bittering unit (IBU) ranges in bar graph format.


Ranges of Bitterness (IBU) by Style



Loading chart. Please wait…




Data for these charts come from the the Beer Judge Certification Program (BJCP).
Share: Share post to twitter Share post to Facebook Share post to google plus Share post to Pinterest

Beer Styles – Original Gravity and Final Gravity Chart – 2017 Update

Sunday, May 7th, 2017

We've updated our popular OG/FG Range Graphs with the latest BJCP beer styles. This chart shows the BJCP beer styles and their original gravity (OG) and final gravity (FG) ranges in bar graph format.

Original gravity (OG) measures how much sugar is present in the wort before it is fermented. The final gravity (FG) is how much sugar is left over when fermentation is done. For a beer to fit into a certain style, each of these numbers must be within the specified range as the chart depicts.

A lower final gravity indicates a dry or crisp flavor, while a higher final gravity indicates a sweet or malty flavor.

The size of the gap between OG and FG can be used to calculate how much alcohol the beer contains.


Ranges of OG and FG by Style



Loading chart. Please wait…




Data for these charts come from the the Beer Judge Certification Program (BJCP).
Share: Share post to twitter Share post to Facebook Share post to google plus Share post to Pinterest

Beer Styles – SRM Color Chart – 2017 Update

Sunday, May 7th, 2017

We've updated our popular SRM Color Charts with the latest BJCP beer styles. This chart shows the BJCP beer styles and their SRM colors in bar graph format. SRM stands for ‘Standard Reference Method’, a scale devised by scientists to describe how light or dark a beer is.


Ranges of Color (SRM) by Style



Loading chart. Please wait…




Data for these charts come from the the Beer Judge Certification Program (BJCP).
Share: Share post to twitter Share post to Facebook Share post to google plus Share post to Pinterest

Improved Calculations for First Wort Hopping

Thursday, April 20th, 2017

FWHWe’ve heard lots of feedback on the way Brewer’s Friend deals with First Wort Hops and today we’re rolling out some updates to the Recipe Builder, offering better calculations for First Wort additions.  For details on what First Wort Hopping (FWH) is, check out our FAQ and original blog post here:

https://www.brewersfriend.com/faq/#firstworthops

https://www.brewersfriend.com/2009/05/09/first-wort-hopping/

How did it work before?

Prior to these changes, we calculated FWH additions as if they were regular boil hops with a duration of 20 minutes.  This was due to subjective reports of the bittering contribution from FWH resembling a 20 minute hop addition.  This doesn’t really capture the essence of what’s happening with first wort additions, since the hops contribute bitterness both during the pre-boil time as well as during the entire boil.

The New Method

To fix this, we’re changing the way these additions figure into overall bitterness.  Instead of a fixed time duration, FWH additions now are included for the entire boil duration (based on what’s entered for boil time in each recipe), and are given a percentage boost in utilization to account for the additional time spent steeping before the boil.  Typically this factor is an additional 10% boost over a regular boil hop, but this value can be customized based on individual findings.  Now, when you select “First Wort” in the “Use” field on the recipe builder, you’ll notice that there’s now a “Scale Util.” field, which holds the overall utilization multiplier.  That means if you want to boost the FWH utilization by 10%, you’d enter 110% in this field.  If you think the additional contribution is more like 20%, you’d enter 120%.  And if you think a first wort hop behaves exactly like a boil hop for the duration of the boil, you’d just enter 100%.

What about existing recipes?

We know there are thousands of recipes that have been built on the previous FWH functionality.  And we know how seriously we rely on our recipe metrics to remain stable and predictable as we brew, rebrew, and experiment.  To that end, we’re taking every existing recipe with a FWH addition and we’re calculating the utilization scalar that results in no IBU/bitterness changes.  So when you open those recipes, you’ll notice that the stats don’t change as a result of this.  If you look under the existing First Wort hops, you’ll see that we’ve filled in a utilization percentage that equates to the IBU numbers you had previously.  If you want to adopt the new approach for an addition, you can simply change that value to 110% and you’ll get the new calculation.  Any new First Wort hops you add will default to the 110% number.

We think these changes will help us all achieve more accurate recipe metrics, use First Wort Hopping more effectively, and ultimately make better beer!  If you run into any problems, bad calculations, or bugs with these changes, please reach out to us:

https://www.brewersfriend.com/feedback-welcome/

 

Cheers!

Share: Share post to twitter Share post to Facebook Share post to google plus Share post to Pinterest
https://www.brewersfriend.com/
Brewer's Friend's twitter Brewer's Friend's facebook page Brewer's Friend's google plus